Abstract

Studies have shown that hypobromous acid (HOBr) produced during chlorination disinfection of tap water can react with some organic matter in water to form toxic brominated disinfection byproducts (Br-DBPs) and HOBr also plays an important role during the process of micro pollutants degradation. Hence, real-time monitoring of HOBr in water environment plays a significant role in controlling the generation of Br-DBPs and degradation of micro pollutants. Herein, a novel highly specific fluorescent probe (PBE-HOBr) for accurate detection of HOBr was constructed based on the HOBr-induced oxidation elimination of benzothiazoline moiety employing the photo-induced electron transfer (PET) mechanism. PBE-HOBr has high sensitivity and linear response to HOBr with a low detection limit of 119 nM. PBE-HOBr not only has the ability to detect endogenous and exogenous HOBr in cells and zebrafish, but also has been used to monitor the formation of HOBr in water treatment. In addition, benzothiazoline group was demonstrated for the first time to be able to be used as a new recognition receptor for developing highly specific fluorescent probes for HOBr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.