Abstract

A better understanding of the behavior of individual grazing dairy cattle will assist in improving productivity and welfare. Global positioning systems (GPS) applied to cows could provide a means of monitoring grazing herds while overcoming the substantial efforts required for manual observation. Any model of behavioral prediction using GPS needs to be accurate and robust by accounting for inter-cow variation as well as atmospheric effects. We evaluated the performance using a series of machine learning algorithms on GPS data collected from 40 pasture-based dairy cows over 4mo. A feature extraction step was performed on the collected raw GPS data, which resulted in 43 different attributes. The evaluated behaviors were grazing, resting, and walking. Classifier learners were built using 10 times 10-fold cross validation and tested on an independent test set. Results were evaluated using a variety of statistical significance tests across all parameters. We found that final model selection depended upon level of performance and model complexity. The classifier learner deemed most suitable for this particular problem was JRip, a rule-based learner (classification accuracy=0.85; false positive rate=0.10; F-measure=0.76; area under the receiver operating curve=0.87). This model will be used in further studies to assess the behavior and welfare of pasture-based dairy cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.