Abstract
Traditional methods used for intelligent condition monitoring and diagnosis significantly depend on manual feature extraction and selection. To address this issue, a transfer learning-convolutional neural network (TLCNN) based on AlexNet is proposed for bearing fault diagnosis. Firstly, a 2D image representation method converts vibration signals to 2D time-frequency images. Secondly, the proposed TLCNN model extracts the features of the 2D time-frequency images and achieves the classification conditions of the bearing, which is faster to train and more accurate. Thirdly, t-distributed stochastic neighbor embedding (t-SNE) is applied to visualize the feature learning process to demonstrate the feature learning ability of the proposed model. The experimental results verify that the proposed fault diagnosis model has higher accuracy and has much better robustness against noise than other deep learning and traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.