Abstract

The efficient diagnosis of bearing faults requires the extraction of informative features. This paper presents a novel approach that combines Weighted Principal Component Analysis (WPCA) with the Gaussian Mixture Model (GMM) for bearing fault diagnosis. The method employs GMM as a fault classifier, aiming to enhance both efficiency and diagnostic accuracy. The proposed algorithm, Expectation Selection Maximization (ESM), introduces a feature selection step to identify the most relevant features for effective bearing fault detection. Specifically, the suggested algorithm utilizes the conditional entropy divergence indicator, a statistical metric, to quantify the significance of features in detecting bearing faults. To validate the effectiveness of this approach, two distinct case studies are conducted using datasets obtained from the University of Ottawa and Case Western Reserve University (CWRU). These datasets encompass a wide range of bearing working conditions, providing a comprehensive evaluation. Experimental results underscore the merits of the approach, achieving an average accuracy rate of 93% for the University of Ottawa dataset and 80% for the CWRU dataset. Furthermore, the findings highlight the superior performance of the proposed method compared to alternative techniques, as evidenced by the receiver operating characteristic (ROC) curve metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call