Abstract

Chimeric-antigen receptor (CAR)-T cell immunotherapies have been remarkably effective in treating acute lymphoblastic leukemia. However, current strategies generally suffer from difficult, inefficient and costly manufacturing processes, significant patient side effects and poor durability of response in some patients. Here, we report for the first time a CAR-T cell therapeutic comprising a non-immunoglobulin alternative scaffold Centyrin molecule (a "CARTyrin") manufactured with a novel non-viral piggyBacTM (PB) transposon-based system. Our lead candidate, P-BCMA-101, encodes a CARTyrin that targets the B cell maturation antigen (BCMA) for the treatment of multiple myeloma (MM) and has several unique aspects that improve upon earlier CAR-T products.First, P-BCMA-101 is manufactured using only in vitro transcribed mRNA and plasmid DNA without the need for lentivirus or g-retrovirus, resulting in time and cost savings. Importantly, PB is also safer than viral systems due to a less mutagenic insertional profile and is non-oncogenic. Furthermore, PB can efficiently deliver transgenes as large as several hundred kilobases, and, once inserted, transgenes demonstrate more stable, prolonged and higher expression when compared to those delivered by virus. Second, a mutein of the dihydrofolate reductase (DHFR) gene is included in the P-BCMA-101 transgene that can be used in combination with the non-genotoxic drug methotrexate (MTX) to provide a simple and effective method of CARTyrin+ cell enrichment and reduces variability in patient product material. Third, P-BCMA-101 incorporates a safety switch for optional depletion in vivo in case of adverse events. Lastly, the CARTyrin is comprised of a BCMA-specific Centyrin, which are based on a human tenascin fibronectin type III (FN3) consensus sequence. Centyrins have similar binding affinities to the antibody-derived single chain variable fragments (scFv), but are smaller, more thermostable and predicted to be less immunogenic. Importantly, no signs of tonic signaling leading to T cell exhaustion have been observed with CARTyrins unlike scFv-based CAR molecules, which can interact with each other on the surface causing non-specific CAR signaling.The manufacture process of P-BCMA-101 from primary human T cells is straightforward, employs no cytokines, and easily produces enough CARTyrin+ cells to treat patients. Within 18 days of electroporation of purified T cells, we demonstrate > 95% of the cell product is positive for CARTyrin expression and ready to be administered. Notably, our manufacturing process results in > 60% of CARTyrin+ T cells exhibiting a stem-cell memory phenotype (i.e. CD45RA+ CD62L+). P-BCMA-101 cells exhibit specific and robust in vitro activity against BCMA+ tumor targets, ranging from high to very low levels of BCMA, as measured by target-cell killing and CARTyrin-T cell proliferation. Importantly, proliferating P-BCMA-101 cells were highly sensitive in vitro to activation of the safety switch. Finally, we have evaluated the anti-tumor efficacy of P-BCMA-101 in a model of human MM. NSG™ mice were injected IV with 1.5x106 luciferase+ MM.1S cells, an aggressive human MM-derived cell line. After the tumor cells were allowed to grow for 21 days, animals received a single IV administration of 5x106 P-BCMA-101 cells. All untreated control animals demonstrated a marked increase in serum M-protein levels, rapid growth of tumor cells demonstrated by bioluminescent imaging (BLI), and death within four weeks. In stark contrast, 100% of animals that received P-BCMA-101 rapidly eliminated tumors within 7 days as measured by BLI and serum M-protein levels and improved survival out to at least 60 days post-treatment.P-BCMA-101 is the first-in-class of Centyrin-based CAR therapeutics. The CARTyrin, combined with our advanced manufacturing processes, represents a significant improvement over first generation, immunoglobulin-based and virally-transduced CAR-T products. P-BCMA-101 exhibited an advantageous stem-cell memory phenotype and demonstrated specific and potent anti-tumor efficacy against BCMA+ myeloma cells both in vitro and in vivo. Based on these results, we plan to initiate a phase I clinical trial of P-BCMA-101 for the treatment of patients with relapsed and/or refractory MM. DisclosuresHermanson:Poseida Therapeutics: Employment. Barnett:Poseida Therapeutics: Employment. Rengarajan:Poseida Therapeutics: Employment. Codde:Poseida Therapeutics: Employment. Wang:Poseida Therapeutics: Employment. Tan:Poseida Therapeutics: Employment. Martin:Poseida Therapeutics: Employment. Smith:Poseida Therapeutics: Employment. Osertag:Poseida Therapeutics: Employment, Equity Ownership. Shedlock:Poseida Therapeutics: Employment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.