Abstract

Intimately coupled photocatalysis and biodegradation (ICPB) is a promising technology to remove refractory contaminants from water. The key to successful ICPB is a carrier capable of accumulating biofilm and adhering photocatalyst firmly. Herein, BC/g-C3N4 was prepared into a three dimensional porous hydrogel and used as a carrier in ICPB system for the first time. Degradation experiments revealed that the removal rate of tetracycline hydrochloride (TCH) in water by the ICPB system was 96.0% after 10 h, which was significantly higher than that by the photocatalysis (PC, 76.3%), biodegradation (B, 32.5%), adsorption (AD, 17.2%), and photolysis (P, 5.0%) systems. Photo-electrochemical tests confirmed that ICPB system had superior electron transfer ability between photocatalysts and microorganisms. The removal efficiency of COD proved that microorganisms played an important role in the mineralization process of TCH by the ICPB system. After the ICPB degradation experiment, microorganisms maintained high activity and Pseudomonas, Burkholderiaceae and Flavobacterium which had TCH degradation or electron transport ability, were enriched. In conclusion, the novel ICPB carrier overcame shortcomings of the traditional ICPB carrier and the novel ICPB system had superior degradation performance for TCH. This study provided a possible method to promote the practical application of ICPB technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.