Abstract

In order to improve the working performance of the lithium-ion battery pack in continuous operation under different ambient temperatures, a coupled composite phase change material and liquid cooling thermal management system is proposed. The simulation for this system under a cycle that a 3C rate discharging and then a 0.5C charging was conducted, as well as comparison tests concerning factors such as cell-to-cell spacing, cell-to-tube distance, channel number and coolant velocity. Simulation results showed that the coupled system with suitable design exhibited good thermal performance at an ambient temperature of 30 °C, which kept the maximum surface temperature and the temperature difference of the battery pack at 41.1 °C and 4 °C at the end of 3C discharge. Then, the latent heat of phase change material was also recovered by the liquid cooling during the 0.5C charge. Specially designed experiments have also been conducted to verify the effectiveness and practicability of the proposed coupled system. Based on this system, a liquid cooling strategy was proposed for controlling the velocity and inlet temperature of coolant by monitoring the temperature of the phase change material and environment. This further improved the thermal performance of the battery pack during cycling at different ambient temperatures and significantly reduced the unnecessary power consumption of liquid cooling during this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.