Abstract

Optical circuit switching networks have been recognized as a promising solution for inter-datacenter networks. However, for intra-datacenter networks, they may fall short in efficiently provisioning traffic requests due to their relatively coarse-grained channel assignment and special intra-datacenter traffic patterns. Optical time slice switching (OTSS) has been recently proposed as an optical-switching technique that can provide flexible and transparent optical circuits by extending the merit of flex-grid switching to the time domain, thus achieving much finer granularity. As OTSS requires nanosecond speed optical switches which are expensive, it might not be economically viable to make a one-time upgrade for the entire datacenter. Thus, we expect fine-grained OTSS-enabled and coarse-grained flex-grid-enabled optical switching techniques to co-exist in the foreseeable future. In this study, we investigate an OTSS-enabled flex-grid (OTSS-FG) architecture for intra-datacenter networks. For scenarios where traffic flows are given, we develop a Mixed Integer Linear Program to study the optimal bandwidth allocation scheme in an OTSS-FG architecture. When traffic flows are generated in real time, by leveraging machine-learning techniques to detect flow types, we propose a flow-aware bandwidth allocation (FABA) scheme and a dynamic version of FABA, called “D-FABA” scheme. Numerical simulations show that proposed bandwidth allocation scheme can outperform benchmark schemes in terms of average delay and blocking probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call