Abstract

The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-resistant enterococci (VRE) is considered a serious health problem worldwide, causing the need for new antimicrobials. The aim of this study was to discover and characterize bacteriocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water, environment and clinical samples were screened. E. faecalis strain 478 isolated from human feces produced the highest antibacterial activity against several MDRE and VRE strains. The optimum condition for bacteriocin production was cultivation in MRS broth at 37°C, pH 5–6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain EF478 was stable at 60°C for at least 1 hour and retained its antimicrobial activity after storage at -20°C for 1 year, at 4°C for 6 months, and at 25°C for 2 months. A nano-HPLC electrospray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed that the amino acid sequences of the bacteriocin-like substance was similar to serine protease of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bacteriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE and MDRE.

Highlights

  • Vancomycin-resistant enterococci (VRE) and multidrug-resistant enterococci (MDRE) have emerged as hospital-acquired pathogen over the last three decades [1]

  • In addition to antimicrobial stewardship program to solve the MDR organisms (MDRO) as well as many preventive measures, public health research focused on identifying novel antimicrobial compounds against MDROs

  • This study aimed to discover novel bacteriocins effective against clinical isolates of MDR- E. faecium and E. faecalis, which are the two most common causes of MDRE infections

Read more

Summary

Introduction

Vancomycin-resistant enterococci (VRE) and multidrug-resistant enterococci (MDRE) have emerged as hospital-acquired pathogen over the last three decades [1]. Enterococcus faecalis and Enterococcus faecium are known to be the most common causes of nosocomial infections, such as urinary tract infection, surgical wound infection, pneumonia, endocarditis, bacteremia and meningitis [2]. They are intrinsically resistant to many antimicrobial agents used in clinical setting and rapidly acquire resistance genes and mutations [1, 3].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.