Abstract
Segmentation is a process to obtain the desirable features in image processing. However, the existing techniques that use the multilevel thresholding method in image segmentation are computationally demanding due to the lack of an automatic parameter selection process. This paper proposes an automatic parameter selection technique called an automatic multilevel thresholding algorithm using stratified sampling and Tabu Search (AMTSSTS) to remedy the limitations. It automatically determines the appropriate threshold number and values by (1) dividing an image into even strata (blocks) to extract samples; (2) applying a Tabu Search-based optimization technique on these samples to maximize the ratios of their means and variances; (3) preliminarily determining the threshold number and values based on the optimized samples; and (4) further optimizing these samples using a novel local criterion function that combines with the property of local continuity of an image. Experiments on Berkeley datasets show that AMTSSTS is an efficient and effective technique which can provide smoother results than several developed methods in recent years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.