Abstract
An innovative automatic modulation classification via graph-based constellation analysis for M-ary QAM signals is presented. In our framework, a unified mesh model for the constellation diagrams of the M-QAM signals within the modulation candidate set is first constructed and exploited to transform the received M-QAM signal into graph domain. The concise graph representation of the received M-QAM signal is established from its constellation according to the positions of the recovered symbols in the mesh model. Then, the modulation feature vector is built from the eigenvector(s) corresponding to the maximum eigenvalue of its adjacency matrix. The modulation type can be identified by measuring the angle between the feature vectors resulting from the training data and the test data. Monte Carlo simulation results and theoretical analysis demonstrate that the proposed method with lower computational complexity can provide superior performance to the existing subtractive clustering technique, and is robust to the residual phase and timing offsets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.