Abstract
Automatic Modulation Classification (AMC) is of paramount importance in wireless communication systems. Existing methods usually adopt a single category of neural network or stack different categories of networks in series, and rarely extract different types of features simultaneously in a proper way. When it comes to the output layer, softmax function is applied for classification to expand the inter-class distance. In this paper, we propose a hybrid parallel network for the AMC problem. Our proposed method designs a hybrid parallel structure which utilizes Convolution Neural Network (CNN) and Gate Rate Unit (GRU) to extract spatial features and temporal features respectively. Instead of superposing these two categories of features directly, three different attention mechanisms are applied to assign weights for different types of features. Finally, a cosine similarity metric named Additive Margin softmax function, which can expand the inter-class distance and compress the intra-class distance simultaneously, is adopted for output. Simulation results demonstrate that the proposed method can achieve remarkable performance on an open access dataset.
Highlights
Automatic Modulation Classification (AMC) is of paramount importance in wireless communication systems
RML2016.10a [28] is the most popular dataset applied in AMC
The Signal to Noise Ratio (SNR) range is from −20 dB to 18 dB, but in practical applications, the communication conditions under −5 dB is useless for communication, we choose −4 dB to 18 dB for our experiments with interval of
Summary
Automatic Modulation Classification (AMC) is of paramount importance in wireless communication systems. Existing methods usually adopt a single category of neural network or stack different categories of networks in series, and rarely extract different types of features simultaneously in a proper way When it comes to the output layer, softmax function is applied for classification to expand the inter-class distance. Our proposed method designs a hybrid parallel structure which utilizes Convolution Neural Network (CNN) and Gate Rate Unit (GRU) to extract spatial features and temporal features respectively. Instead of superposing these two categories of features directly, three different attention mechanisms are applied to assign weights for different types of features. Maximum likelihood-based approaches can be divided into 3 categories: average likelihood ratio test (ALRT) [5], generalised likelihood ratio test (GLRT) [6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.