Abstract
Cardiac arrhythmias indicate cardiovascular disease which is the leading cause of mortality worldwide, and can be detected by an electrocardiogram (ECG). Automated deep learning methods have been developed to overcome the disadvantages of manual interpretation by medical experts. The performance of the networks strongly depends on hyperparameter optimization (HPO), and this NP-hard problem is suitable for metaheuristic (MH) methods. In this study, a novel method is proposed for the HPO of a convolutional neural network (CNN) arrhythmia classifier using an MH algorithm. The approach utilizes our variant of an MH method, named the memory-enhanced artificial hummingbird algorithm, which has an additional memory unit that stores the evaluations of the solutions and reduces the computation time significantly. The study also proposes a novel fitness function that considers both the accuracy rate and the total number of parameters of each candidate network. Experiments were conducted on raw ECG samples from the MIT-BIH arrhythmia database. The proposed method was compared with five other MH methods and achieved equal or outperforming results, with classification accuracy reaching 98.87%. The proposed method yielded promising results in finding a high-performing solution with relatively lower complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.