Abstract

Background: The Accurate estimation of fetal weight is important in modern obstetrics. Currently, Hadlock's formula is used widely for fetal weight estimation, which includes BPD, AC, FL and HC. The correct plane of measurement of various standard parameters is difcult to obtain especially in third trimester. Hence soft tissue thicknesses of the fetus are tested for correlation with birth weight in this study. Materials & Methods: A prospective observational study conducted among 90 pregnant females referred for Ultrasound examination in the third trimester with an interval from the ultrasound scan to delivery of ≤7 days from 2019 to 2020. Results: The measurements of abdominal, fetal mid-thigh and mid-arm soft tissue thicknesses correlated well with birth weight in a high statistically signicant positive linear relationship. A new regression model developed out of the soft tissue thicknesses(FASTT, FMASTT, FTSTT) correlates better than the Hadlock's model and Sujitkumar Hiwale et al model (For Indian population) based on BPD, HC, AC and FL Conclusion: Ultrasound measurement of soft tissue thickness may prove to be a strong predictor of fetal weight essential for sonographic assessment of pregnancy. They are easy and simple hence fetal soft tissue thickness measurements, both two- and three-dimensional, may prove to be a diagnostic parameter that has as small an error rate as possible, is quick to use and reproducible by different examiners

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.