Abstract

A new type of meta-heuristic global optimization methodology based on atom dynamics is introduced. The proposed Atom Search Optimization (ASO) approach is a population-based iterative heuristic global optimization algorithm for dealing with a diverse set of optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where atoms interact with each other through interaction forces resulting form Lennard-Jones potential and constraint forces resulting from bond-length potential, the algorithm is simple and easy to implement. ASO is applied to a dispersion coefficient estimation problem, the experimental results demonstrate that ASO can outperform other well-known approaches such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Bacterial Foraging Optimization (BFO) and that ASO is competitive to its competitors for parameter estimation problems. The source codes of ASO are available at https://www.mathworks.com/matlabcentral/fileexchange/67011-atom-search-optimization--aso--algorithm?s_tid=srchtitle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.