Abstract

Abstract A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young’s modulus and Poisson’s ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young’s modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.