Abstract

Existing swarm intelligence (SI) models are usually derived from fixed-population biological system. However, this approach inevitably causes unnecessary computational cost. In addition, the population size of these models is usually hard to be pr-determined appropriately. In this contribution, this paper exploits a general varying-population swarm model (VPSM) with life-cycle foraging rules based on the population growth dynamic principle. This model essentially improves individual-level adaptability and population-level emergence to self-adapt towards an optimal population size. Then, a novel VPSM-based artificial bee colony optimiser is instantiated with orthogonal Latin squares approach and crossover-based social learning strategies. A comprehensive experimental analysis is implemented in which the proposed algorithm is benchmarked against classical bio-mimetic algorithms on CEC2014 test suites. Then, this algorithm is applied for multi-level image segmentation. Computation results show the performance superiority of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.