Abstract

Given the essential role of Epigenetic regulation in many biological processes, targeted epigenetic drugs have been gradually applied to the treatment of tumors. Histone deacetylases (HDACs) are a class of epigenetic enzymes, which play key roles in chromosome structural modification and gene expression regulation. Targeted microtubules drugs have achieved great success in clinical application for decades. Development of novel agents with multitargeting capabilities specially dual-target has become a popular research field for the treatment of human cancers, which may provide synergistic anticancer effects. Here, we reported a novel aromatic amide derivative SY-65 co-targeted tubulin and histone deacetylase 1 with potent anticancer activity in vitro and in vivo. Compound SY-65 was identified as a dual inhibitor of tubulin/HDAC1 (IC50 = 3.64 and 0.529 μM, respectively) with excellent antiproliferative activity against MGC-803, HCT-116, KYSE-450, HGC-27, SGC-7901 and MKN-45 cells. Especially, compound SY-65 exhibited potent antiproliferative activity against MGC-803, HGC-27 and SGC-7901 cells with IC50 values <55 nM, which was better than that of Colchicine, MS-275 and SAHA. Compound SY-65 effectively inhibited tubulin polymerization and bound to the colchicine binding site of tubulin, as well as inhibited HDAC1 activity both intra/extracellularly. Molecular docking results suggested there were the well-defined binding modes of compound SY-65 in HDAC1 and tubulin. In addition, compound SY-65 inhibited colony formation, interfered with the cell cycle distribution, induced cell cycle arrest at the G2/M phase and apoptosis in MGC-803 and HGC-27 cells. Compound SY-65 also exhibited a good tumor inhibitory effect in vivo without obvious toxicity. Therefore, compound SY-65 could be developed as a novel tubulin/HDAC1 candidate inhibitor for future cancer therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.