Abstract

Asymmetric supercapacitors (ASCs), employing two dissimilar electrode materials with a large redox peak position difference as cathode and anode, have been designed to further broaden the voltage window and improve the energy density of supercapacitors. Organic molecule based electrodes can be constructed by combining redox-active organic molecules with conductive carbon-based materials such as graphene. Herein, pyrene-4,5,9,10-tetraone (PYT), a redox-active molecule with four carbonyl groups, exhibits a four-electron transfer process and can potentially deliver a high capacity. PYT is noncovalently combined with two different kinds of graphene (Graphenea [GN] and LayerOne [LO]) at different mass ratios. The PYT-functionalized GN electrode (PYT/GN 4-5) possesses a high capacity of 711 F g-1 at 1 A g-1 in 1M H2 SO4 . To match with the PYT/GN 4-5 cathode, an annealed-Ti3 C2 Tx (A-Ti3 C2 Tx ) MXene anode with a pseudocapacitive character is prepared by pyrolysis of pure Ti3 C2 Tx . The assembled PYT/GN 4-5//A-Ti3 C2 Tx ASC delivers an outstanding energy density of 18.4Wh kg-1 at a power density of 700W kg-1 . The PYT-functionalized graphene holds great potential for high-performance energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.