Abstract
A novel asymmetric supercapacitor (ASC) is assembled based on petal-like cobalt selenide (Co0.85Se) nanosheets as positive electrode and nitrogen-doped porous carbon networks (N-PCNs) as negative electrode in a 2 M KOH aqueous electrolyte. The Co0.85Se nanosheets are synthesized via a simple low-temperature solvothermal method without any template and surfactant, and the N-PCNs are prepared by integrating in-situ oxidation polymerization and catalytic carbonization methods directly from the p-phenylenediamine monomers. Thanks to their unique structures and high capacitive performance, the as-assembled Co0.85Se//N-PCNs ASC device possesses an extended operating voltage window of 1.6 V, high energy density of 21.1 W h kg−1 at a power density of 400 W kg−1 and outstanding cycling stability (93.8% capacitance retention after 5000 cycles) in aqueous electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.