Abstract
This paper presents a novel multiobjective wrapper approach using Dynamic Social Impact Theory based optimizer (SITO). A Fuzzy Inference System in conjunction with support vector machines classifier has been used for the optimization of an impedance-Tongue for the classification of samples collected from single batch production of Kangra orthodox black tea. Impedance spectra of the tea samples have been measured in the range of 20 Hz to 1 MHz using a two electrode setup employing platinum and gold electrodes. The proposed approach has been compared, for its robustness and validity using various intra and inter measures, against Genetic Algorithm and binary Particle Swarm Optimization. Feature subset selection methods based on the first and second order statistics have also been employed for comparisons. The proposed approach outperforms the Genetic Algorithm and binary Particle Swarm Optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.