Abstract

AbstractInsulation systems in high‐voltage electric machines play a pivotal role in the reliable operation and longevity of the equipment. Mica‐based insulation materials have proven to possess and maintain excellent dielectric properties in the long run and prevent premature insulation degradation. Numerous qualifications tests, such as voltage endurance, are outlined in IEC and IEEE standards. The authors, however, take a different parametric approach, opting for reliability assessment of insulation systems using derived three‐parameter Weibull models. Therefore, instead of simple pass–fail criteria, empirical data is employed to determine failure rate probabilities quantitatively and objectively. Experimental data, including breakdown, dissipation factor, and partial discharge measurements, are used to construct the Weibull distribution model to predict fault and failure rates and calculate hazard functions. The rigorous examinations interpreted through the analytical model help assess insulation system resilience and particularly the impact of electrical field stress and mica content. Variation of electrical stress from 66.75 to 71.20 V/mil demonstrated how the mean time to failure of the system changed from 146.4 to 85.1 at 3 Un, hence identifying opportunities for design improvement and uncovering performance boundaries. Ultimately, the developed framework enhances comprehension of insulation system failure probabilities, guiding design decisions and ensuring a secure and reliable operation of electrical machines across applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.