Abstract

Molecular interaction in two-dimensional (2D) van der Waals (vdW) interfaces has drawn tremendous attention for extraordinary materials characteristics. So far sensing characteristics of molecular interaction has been exploited extensively to reach the detection limit to a few parts-per-billion (ppb) of molecules and far less attention is given to the evolution of persistent current state due to the molecular exposure. Our study focuses on molecular memory operation of MoS2-graphene heterostructure based field effect transistor. Metastable resistance state of the device due to the external perturbation of molecules is tuned to get a nearly relaxation free current state at much lower molecular concentration of 10 ppb to facilitate non-volatile memory features for molecular memory operation. An ultrafast switching operation in milli-second order is achieved at room temperature for the fastest recovery obtained so far in any molecular sensor. The process is co-controlled both by molecular as well as external charge density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.