Abstract

DNA methylation is a major epigenetic modification involved in many physiological processes. Normal methylation patterns are disrupted in many diseases and methylation-based biomarkers have shown promise in several contexts. Marker discovery typically involves the analysis of publicly available DNA methylation data from high-throughput assays. Numerous methods for identification of differentially methylated biomarkers have been developed, making the need for best practices guidelines and context-specific analyses workflows exceedingly high. To this end, here we propose TASA, a novel method for simulating methylation array data in various scenarios. We then comprehensively assess different data analysis workflows using real and simulated data and suggest optimal start-to-finish analysis workflows. Our study demonstrates that the choice of analysis pipeline for DNA methylation-based marker discovery is crucial and different across different contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.