Abstract
Preparation of lamellae from bulk to grid for Cs-corrected Transmission Electron Microscope (TEM) observation has mostly become routine work on the latest FIB-SEM systems, with standardized techniques that often are left to automation for the initial steps. The finalization of lamellae however, has mostly become, non-routine, non-repeatable and often driven by user experience level in most cases to produce high quality damage-less cross section. Materials processing of the latest technologies, with ever-shrinking Nano-sized structures pose challenges to modern FIB-SEM systems. This can often lead to specialized techniques and hyper-specific functions for producing ultra-thin high quality lamellae that often are lab specific, preventing practical use of such techniques across multiple materials and applications. Several factors that should be incorporated in processing fine structured materials successfully include how the use of electron and ion scan conditions can affect a thin section during ion milling, the type of ion species applied for material processing during the finalization of lamellae with gallium ions or of a smaller ion species type such as Ar/Xe, sample orientation of the lamella during the thinning process which is linked to ion beam incident angle as a direct relationship in the creation of waterfall effects or curtain effects, and how software can be employed to aid in the reduction of these artifacts with reproducible results regardless of FIB-SEM experience for site-specific lift outs. A traditional TEM preparation was performed of a fine structure specimen in pursuit of a process technique to produce a high quality TEM lamella which would address all of the factors mentioned. These new capabilities have been refined and improved upon during the FIB-SEM design and development stages with an end result of a new approach that yields an improvement in quality by the reduction of common ion milling artifacts such as curtain effects, amorphous material, and better pin pointing of the area of interest while reducing overall processing time for the TEM sample preparation process and enhancing repeatability through ease of use via software controls. The development of these new technologies, incorporating a third Ar/Xe ion beam column in conjunction with the electron and gallium ion beam column, a 7-axis stage for enhanced sample orientation with tilt functions in two axes and automated swing control along with a host of additional functions which address the factors aforementioned such as electron and ion scan techniques and curtain effect removal by the use of hardware and software components that are key to reduce typical FIB related artifacts, all of which are called “ACE [Anti Curtaining Effect] Technologies” are explained. The overall developments of these technologies are to address a significant point that productivity, throughput and repeatability are comprised by synergy between the user, application, software and hardware within a FIB-SEM system. The latest Hitachi FIB-SEM platform offers these innovations for reliability, repeatability and high quality lamella preparation for Cs-corrected (S)TEMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.