Abstract

This paper presents a new supervised classification technique for hyperspectral imagery, which consists of two algorithms, referred to as greedy modular eigenspace (GME) and positive Boolean function (PBF). The GME method is designed to extract features by a simple and efficient GME feature module. The GME makes use of the data correlation matrix to reorder spectral bands from which a group of feature eigenspaces can be generated to reduce dimensionality. It can be implemented as a feature extractor to generate a particular feature eigenspace for each of the material classes present in hyperspectral data. The residual reconstruction errors (RRE) are then calculated by projecting the samples into different individual GME-generated modular eigenspaces. The PBF is further developed for classification. It is a stack filter built by using the binary RRE as classifier parameters for supervised training. It implements the minimum classification error (MCE) as a criterion so as to improve classification performance. It utilizes the positive and negative sample learning ability of the MCE criteria to improve classification accuracy. The performance of the proposed method is evaluated by MODIS/ASTER airborne simulator (MASTER) images for land cover classification during the Pacrim II campaign. Experimental results demonstrate that the GME feature extractor suits the nonlinear PBF-based multi-class classifier well for classification preprocessing. The proposed approach is not only an effective method for land cover classification in earth remote sensing but also dramatically improves the eigen-decomposition computational complexity compared to the conventional principal components analysis (PCA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.