Abstract

Extracting subpixel land-cover change detection (SLCCD) information is important when multitemporal remotely sensed images with different resolutions are available. The general steps are as follows. First, soft classification is applied to a low-resolution (LR) image to generate the proportion of each class. Second, the proportion differences are produced by the use of another high-resolution (HR) image and used as the input of subpixel mapping. Finally, a subpixel sharpened difference map can be generated. However, the prior HR land-cover map is only used to compare with the enhanced map of LR image for change detection, which leads to a nonideal SLCCD result. In this letter, we present a new approach based on a back-propagation neural network (BPNN) with a HR map (BPNN_HRM), in which a supervised model is introduced into SLCCD for the first time. The known information of the HR land-cover map is adequately employed to train the BPNN, whether it predates or postdates the LR image, so that a subpixel change detection map can be effectively generated. In order to evaluate the performance of the proposed algorithm, it was compared with four state-of-the-art methods. The experimental results confirm that the BPNN_HRM method outperforms the other traditional methods in providing a more detailed map for change detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call