Abstract
Inversion of electromagnetic (EM) signals reflected from or transmitted through a medium, or emitted by it due to internal sources can be used to investigate the optical and physical properties of a variety of scattering/absorbing/emitting materials. Such media encompass planetary atmospheres and surfaces (including water/snow/ice), and plant canopies. In many situations the signals emerging from such media can be described by a linear transport equation which in the case of EM radiation is the radiative transfer equation (RTE). Solutions of the RTE can be used as a forward model to solve the inverse problem to determine the medium state parameters giving rise to the emergent (reflected/transmitted/emitted) EM signals. A novel method is developed to determine layer-by-layer contributions to the emergent signals from such stratified, multilayered media based on the solution of the pertinent RTE. As a specific example of how this approach may be applied, the radiation reflected from a multilayered atmosphere is used to solve the problem relevant for EM probing by a space-based lidar system. The solutions agree with those obtained using the standard lidar approach for situations in which single scattering prevails, but this novel approach also yields reliable results for optically thick, multiple scattering aerosol and cloud layers that cannot be provided by the traditional lidar approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.