Abstract

Dermoscopy is an imaging technique that has been widely used in the diagnosis of skin lesions. However, its accuracy largely depends on the dermatologist's experience; thus, computer-aided diagnosis techniques are required. In this paper, a novel approach based on a deformable model is proposed to handle the segmentation of skin lesions in dermoscopic images. The RGB color space is converted so that the color information contained in the images can be used effectively to differentiate normal skin and skin lesions; and the differences in the color channels are combined together to define the speed function and the stopping criterion of the deformable model. This novel approach is robust against the noise, and provides an effective and flexible segmentation. Two image databases were used to test the performance of the novel approach and the segmentation results obtained were satisfactory. Quantitative analysis on 250 dermoscopic images showed that the novel algorithm outperformed other state-of-the-art algorithms. Also, using comparative data, the reliability and the implementation issues of the approach are discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call