Abstract

Therapeutic drug monitoring (TDM) requires timely results in order to be clinically helpful. Such assays, when carried out using mass spectrometry-based methods, typically involve a batched sample approach with multipoint calibration. Isotopic internal calibration offers the possibility of open-access mass spectrometric analysis with consequent shortening of turnaround times. We measured plasma clozapine and N-desmethylclozapine (norclozapine) concentrations in (1) external quality assessment (EQA) samples (N = 22) and (2) patient samples (N = 100) using liquid chromatography-tandem mass spectrometry with isotopic internal calibration (ICAL-LC-MS/MS). Analyte concentrations were calculated from graphs of the response of three internal calibrators (clozapine-D4, norclozapine-D8, and clozapine-D8) against concentration. Precision (% RSD) and accuracy (% nominal concentrations) for the ICAL-LC-MS/MS method were <5 % and 104-112 %, respectively for both analytes. There was excellent agreement with consensus mean and with 'spiked' values on analysis of the EQA samples (R (2) = 0.98 and 0.97, respectively, inclusive of clozapine and norclozapine results). In the patient samples, comparison against traditionally calibrated HPLC-UV and LC-MS/MS methods showed excellent agreement (R (2) = 0.97 or better) with small albeit significant mean differences (<0.041 and <0.042 mg/L for clozapine and norclozapine, respectively). These differences probably reflect discrepancies in the in-house preparation of calibrators and/or interference in the UV method. Internal calibration offers a novel and attractive alternative to traditionally calibrated batch analysis in analytical toxicology. The method described has been validated for use in the high-throughput TDM of clozapine and norclozapine, and allows for (1) same-day reporting of results and (2) significant cost savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.