Abstract

Due to the increased availability of digital human models, the need for knowing human movement is important in product design process. If the human motion is derived rapidly as design parameters change, a developer could determine the optimal parameters. For example, the optimal design of the door panel of an automobile can be obtained for a human operator to conduct the easiest ingress and egress motion. However, acquiring motion data from existing methods provides only unrealistic motion or requires a great amount of time. This not only leads to an increased time consumption for a product development, but also causes inefficiency of the overall design process. To solve such problems, this research proposes an algorithm to rapidly and accurately predict full-body human motion using an artificial neural network (ANN) and a motion database, as the design parameters are varied. To achieve this goal, this study refers to the processes behind human motor learning procedures. According to the previous research, human generate new motion based on past motion experience when they encounter new environments. Based on this principle, we constructed a motion capture database. To construct the database, motion capture experiments were performed in various environments using an optical motion capture system. To generate full-body human motion using this data, a generalized regression neural network (GRNN) was used. The proposed algorithm not only guarantees rapid and accurate results but also overcomes the ambiguity of the human motion objective function, which has been pointed out as a limitation of optimization-based research. Statistical criteria were utilized to confirm the similarity between the generated motion and actual human motion. Our research provides the basis for a rapid motion prediction algorithm that can include a variety of environmental variables. This research contributes to an increase in the usability of digital human models, and it can be applied to various research fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call