Abstract

Silicon photonics leverages microelectronic fabrication facilities to achieve photonic circuits of unprecedented complexity and cost efficiency. This efficiency does not yet translate to optical packaging, however, which has not evolved substantially from legacy devices. To reach the potential of silicon photonics, we argue that disruptive advances in the packaging cost, scalability in the optical port count, and scalability in the manufacturing volume are required. To attain these, we establish a novel photonic packaging direction based on leveraging existing microelectronics packaging facilities. We demonstrate two approaches to fiber-to-chip interfacing and one to hybrid photonic integration involving direct flip-chip assembly of photonic dies. Self-alignment is used throughout to compensate for insufficient placement accuracy of high-throughput pick and place tools. We show a self-aligned peak transmission of -1.3 dB from standard cleaved fibers to chip and of -1.1 dB from chip to chip. The demonstrated approaches are meant to be universal by simultaneously allowing wide spectral bandwidth for coarse wavelength division multiplexing and large optical-port count.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.