Abstract
Coating of sea bream fillets with thymol loaded chitosan based electrospun nanofibers (TLCN) and chitosan based nanafibers (CN) has been presented a novel approach to delay chemical deterioration. We assessed CN and TLCN with respect of scanting of total volatile basic nitrogen (TVBN), trimethylamine (TMA), thiobarbituric acid (TBA) deterioration during cold storage condition. Electrospinning process was applied to obtain TLCN and CN. Both of nanofibers obtained from biopolymer and bioactive material were cylindrical, smooth, beadless. Thermal, molecular, zeta potential (ZP), and surface properties of the groups were investigated, revealing that CN indicated molecular interactions with thymol in nanofibers, reduce in physical properties of these structures, thermal decomposition (an alteration in mass of CN and TLCN at temperatures below 190 °C, corresponding to 20.53% and 19.97%, respectively) and also dispersion stabilities (ζ potential) of CN and TLCN were determined 33.68 ± 3.35 and 21.85 ± 1.96 mV, respectively. TVBN and TMA stability analyses demonstrated that CN and TLCN were both effective in delaying chemical deterioration of fish fillets, furthermore TLCN was more effective against chemical deterioration. TBA analyses results of fish fillets indicated that CN and TLCN delayed rancidity in fish meat as compared to control group samples. The presented study results suggested that coating of the sea bream fillets with CN and TLCN would be a promising approach to delay the chemical deterioration of fish fillets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.