Abstract

ABSTRACTFunctional refractory materials for flow control devices of molten steel in continuous casting used to be prepared from Al2O3–C refractories containing dense corundum aggregates. According to the traditional concept, the denser the refractories, the higher the strength of refractories. However, we prepared a new lightweight Al2O3–C refractory material using microporous corundum aggregates instead of dense corundum aggregates, which were reinforced by in situ formed SiC whiskers. A comparative analysis of microstructures and properties was carried out for conventional and lightweight Al2O3–C refractories with and without Si powder addition. We showed that microporous aggregates formed a better aggregate/matrix interface bonding and an improved distribution of SiC whiskers. The SiC whiskers formed not only in the matrix, but also inside of the microporous aggregates and at the aggregate/matrix interface by a vapor‐solid reaction mechanism. Due to the formation of a microporous aggregate/matrix interface reinforced by SiC whiskers, the crack propagation along the aggregate/matrix interface was suppressed, whereas the percentage of cracks propagating within the aggregates was enhanced. Thus, the synergy between in situ formed SiC whiskers and microporous aggregates resulted in a significant higher strength of lightweight Al2O3–C refractories compared to conventional ones. The results therefore provide an original strategy to strengthen Al2O3–C refractories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call