Abstract
<abstract> In mathematics and computer sciences, the partitioning of a set into two or more disjoint subsets of equal sums is a well-known NP-complete problem, also referred to as partition problem. There are various approaches to overcome this problem for some particular choice of integers. Here, we use quadratic residue graph to determine the possible partitions of positive integers $ m = 2^{\beta}, q^{\beta}, 2^{\beta}q, $ $ 2q^{\beta}, qp, $ where $ p $, $ q $ are odd primes and $ \beta $ is any positive integer. The quadratic residue graph is defined on the set $ Z_{m} = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}, $ where $ Z_{m} $ is the ring of residue classes of $ m $, i.e., there is an edge between $ \overline{x}, $ $ \overline{y}\in Z_{m} $ if and only if $ \overline{x}^{2}\equiv \overline{y}^{2}\; (\text{mod}\; m) $. We characterize these graphs in terms of complete graph for some particular classes of $ m $. </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.