Abstract
Yielding foundation conditions have been shown to adversely affect the stability and behaviour of overlying geosynthetic reinforced soil walls. To avoid serious problems and maintain a cost-effective design, careful consideration must be given to short-term stability. Previous research has shown that lengthening and stiffening the bottom reinforcement layer of the wall can increase the external stability, but the magnitude of this increase is not well understood. To provide insight regarding the potential benefit of lengthening and stiffening the bottom reinforcement layer, a numerical investigation is made of the plastic collapse mechanism due to bearing capacity failure of the foundation deposit for the case of a 6 m high geosynthetic reinforced retaining wall on a 10 m thick soft to firm visco plastic clay stratum. The calculated behaviour of the wall is compared with that from typical and novel design considerations for both a conventional reinforced wall and a wall where the bottom reinforcement layer has been extended and stiffened. A parametric study of the extended bottom reinforcement layer stiffness and interaction is reported, and the influence on the external stability is discussed.Key words: reinforced soil wall, soft yielding foundation, bearing capacity design, numerical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.