Abstract

The combination of electron beam lithography and gold nanoparticle-based detection method is subject to a novel high-resolution approach to detecting DNA nanoarrays. In this work, gold nanoparticle-based detection of DNA hybridization on nanostructured arrays is presented. The nanostructured arrays were created by electron beam lithography of a self-assembled monolayer. Amine groups, which are active moieties and are used for attachment of DNA, were introduced to the nanostructures, and the amine-modified structures were characterized by scanning Maxwell-stress microscopy (SMM) for seeing the modification process. The DNA probe covalently immobilized within the nanostructures was hybridized with a biotinylated target DNA. Streptavidin-gold conjugate was then bound to the biotin, thereby assembling inside the nanostructured arrays. The sequence-specific hybridization was imaged by atomic force microscopy (AFM). On the other hand, the activity of the DNA molecules within the nanostructured arrays was verified by fluorescence microscopy using streptavidin-Cy 5 conjugate instead of streptavidin-gold nanoparticles conjugate. On the basis of fluorescent detection, an alternative method has been developed for detection of DNA nanostructures, which will benefit the development of DNA chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.