Abstract

trans-Epithelial delivery of medication across the vagina has proven successful for administration of small, lipophilic molecules such as sex steroids. However, little information is available regarding the vaginal delivery of larger and more polar molecules that currently require parenteral administration because the vaginal epithelium is perceived as a barrier to absorption of larger molecular weight (MW) molecules. Six healthy women underwent administration of 18 or 36mg of leuprolide, a GnRH agonist and a larger MW peptide, via a novel ethylene vinyl acetate (EVA) ring transvaginal drug delivery system (TVDS). Serum levels rose within 8h following insertion: low dose at 310pg/ml and high dose at 1220pg/ml, i.e. levels typically following parenteral injections of leuprolide. GnRHa biological activity was validated by secretion of gonadotropins and sex steroids. These results demonstrate that the non-keratinized vaginal epithelium permits a rapid absorption of a biologically active peptide and that there is significant potential for a novel TVDS to deliver peptides and possibly other macromolecules therapeutically. Significance statementCurrent routes of administration of medications can include oral, subcutaneous, intravenous, intramuscular, transcutaneous, etc. Many of these approaches have limitations, including pain, poor tolerability, lack of adherence, and inadequate delivery. Peptides, in particular, cannot typically be given orally because they are broken down in the intestinal tract before they are absorbed. While the skin is an attractive way to deliver medications, its superb intrinsic barrier function often makes this route untenable at times. The vaginal epithelium, in contrast, is not keratinized and can allow absorption of other molecules. In this study, we demonstrate that a novel transvaginal drug delivery system (TVDS) is capable of delivering peptide therapeutics to women in a non-parenteral fashion as demonstrated by both blood levels and biologic effects of its delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.