Abstract

Light Detection and Ranging (LiDAR) data have been widely used to characterize the 3-D structure of the forest. However, their use in a multitemporal framework has been quite limited due to the relevant challenges introduced by the comparison of pairs of point clouds. Because of the irregular sampling of the laser scanner and the complex structure of forest areas, it is not possible to perform a point-to-point comparison between the two data. To overcome these challenges, a novel hierarchical approach to the detection of 3-D changes in forest areas is proposed. The method first detects the large changes (e.g., cut trees) by comparing the Canopy Height Models derived from the two LiDAR data. Then, according to an object-based change detection approach, it identifies the single-tree changes by monitoring both the treetop and the crown volume growth. The proposed approach can compare LiDAR data with significantly different pulse densities, thus allowing the use of many data available in real applications. Experimental results pointed out that the method can accurately detect large changes, exhibiting a low rate of false and missed alarms. Moreover, it can detect changes in terms of single-tree growth, which are consistent with the expected growth rates of the considered areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call