Abstract

Internet of Medical Things (IoMT) is on-demand research area, generally utilized in most of medical applications. Security is a challenging problem in decentralized platform while handling with medical data or images. An effective deep learning-based blockchain framework with reduced transaction cost is proposed to enhance the security of medical images in IoMT. The proposed study involves four different stages like image acquisition, encryption, optimal key generation, secured storing. The input images initially are collected in the image acquisition stage. Then, the collected medical images are encrypted using coupled map lattice (CML). This encryption process assists to preserve the input medical images from the attackers. In order to provide more confidentiality to the encrypted images, optimal keys are generated using opposition-based sparrow search optimization (O-SSO) algorithm. These encrypted images are stored using distributed ledger technology (DLT) and smart contract based blockchain technology. This blockchain technology enhances the data integrity and authenticity and allows secured transmission of medical images. After decrypting the image, the disease is diagnosed in the classification stage using proposed Recurrent Generative Neural Network (RGNN) model. The proposed study used python tool for simulation analysis and the medical images are gathered from CT images in COVID-19 dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call