Abstract

Abstract Modern power systems are increasingly becoming more complex and thus become vulnerable to voltage collapse due to constant increase in load demand and introduction of new operation enhancement technologies. In this study, an approach which is based on network structural properties of a power system is proposed for the identification of critical nodes that are liable to voltage instability. The proposed Network Structurally Based Closeness Centrality (NSBCC) is formulated based on the admittance matrix between the interconnection of load to load nodes in a power system. The vertex (node) that has the highest value of NSBCC is taken as the critical node of the system. To demonstrate the significance of the concept formulated, the comparative analysis of the proposed NSBCC with the conventional techniques such as Electrical Closeness Centrality (ECC), Closeness Voltage Centrality (CVC) and Modal Analysis is performed. The effectiveness of all the approaches presented is tested on both IEEE 30 bus and the Southern Indian 10-bus power systems. Results of simulation obtained show that the proposed NSBCC could serve as valuable tool for rapid real time voltage stability assessment in a power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call