Abstract
Abstract Electric vehicles (EVs) have been widely cherished by consumers in recent years. However, as the number of EVs continues to increase, the number of retired power batteries will also increase, especially retired power lithium-ion batteries (LIBs), which will cause serious energy waste. To reuse sufficiently retired power LIBs, we studied the remaining useful life (RUL) of the power LIBs after retirement, so that the battery can be used in different usage scenarios, such as electric bicycles, grid energy storage, and communication base stations. The study first considers the inconsistency of the internal resistance and capacity of the LIBs pack and uses the battery available energy to predict the RUL of the retired power LIBs. Then, we further use the genetic programming (GP) method to predict the RUL of retired power LIBs. The case study shows the prediction accuracy of GP is better than response surface methodology (RSM), Kriging, and radial basis function (RBF) surrogate model. When the LIBs cycles are 100, 110, 120, and 130, the GP model prediction is relatively accurate and the minimum prediction error is only 5.26%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.