Abstract

Virtual motion and pose from images and video can be estimated by detecting body joints and their interconnection. The human body has diverse and complicated poses in yoga, making its classification challenging. This study estimates yoga poses from the images using a neural network. Five different yoga poses, viz. downdog, tree, plank, warrior2, and goddess in the form of RGB images are used as the target inputs. The BlazePose model was used to localize the body joints of the yoga poses. It detected a maximum of 33 body joints, referred to as keypoints, covering almost all the body parts. Keypoints achieved from the model are considered as predicted joint locations. True keypoints, as the ground truth body joint for individual yoga poses, are identified manually using the open source image annotation tool named Makesense AI. A detailed analysis of the body joint detection accuracy is proposed in the form of percentage of corrected keypoints (PCK) and percentage of detected joints (PDJ) for individual body parts and individual body joints, respectively. An algorithm is designed to measure PCK and PDJ in which the distance between the predicted joint location and true joint location is calculated. The experiment evaluation suggests that the adopted model obtained 93.9% PCK for the goddess pose. The maximum PCK achieved for the goddess pose, i.e., 93.9%, PDJ evaluation was carried out in the staggering mode where maximum PDJ is obtained as 90% to 100% for almost all the body joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.