Abstract

An advanced neurophysiological computing system can incorporate a 3-D integration system composed of emerging nano-scale devices to provide massive parallelism having high speed, low cost, and energy efficient hardware implementation. Due to process technology constraints, a certain amount of redundant through silicon vias (TSVs) and dummy TSVs are always required in a 3-D integrated system. In this paper, we propose to use these redundant and dummy TSVs to supply the neuronal membrane capacitance that maps the membrane electrical activity in a hybrid 3-D neuromorphic system. This proposition could also serve the need of neuronal ion transportation dynamics. We also investigate two new methodologies that could significantly enhance the TSV capacitance in a 3-D neuromorphic system. The capacitance of these enhanced TSVs is studied with analytical models; the accuracy of the models are evaluated against 3-D field extracted values. The advantage of using the TSVs to mimic membrane capacitance in a 3-D neuromorphic chip is demonstrated through comparisons of both silicon area and energy consumption against their 2-D counterpart designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.