Abstract

The main scope of the present work is to investigate the mechanisms underlying the hydroacoustic and hydrodynamic perturbations in a rudder operating in the wake of a free running marine propeller. The study consisted of detailed near-field pressure fluctuation measurements which were acquired on the face and back surfaces of the rudder, at different deflection angles. To this aim, a novel wavelet-filtering procedure was applied to separate and analyze distinctly the acoustic and hydrodynamic components of the recorded near-field pressure signals. The filtering procedure undertakes the separation of intermittent pressure peaks induced by the passage of eddy structures, interpreted as pseudo-sound, from homogenous background fluctuations, interpreted as sound. The use of wavelet in the filtering procedure allows to overcome the limitations of the earlier attempts based on frequency (wave number) band-pass filtering, retrieving the overall frequency content of both the acoustic and the hydrodynamic components and returning them as independent signals in the time domain. Acoustic and hydrodynamic pressure distributions were decomposed harmonically and compared to the corresponding topologies of the vorticity field, derived from earlier LDV measurements performed by Felli and Falchi (Exp Fluids 51(5):1385–1402, 2011). The study highlighted that the acoustic perturbation is mainly correlated with the unsteady load variations of the rudder and to the shear layer fluctuations of the propeller streamtube. Conversely, the dynamics of the propeller tip and hub vortices underlies the hydrodynamic perturbation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call