Abstract
A new approach for the field calibration of line structured-light sensors is presented, which is fulfilled using a planar target and a raising block. The camera model is firstly established according to the mapping between the world coordinate frame and the computer image coordinate frame. Based on the rule of cross-ratio invariance the calibration points are extracted from the squares on the target, and the lens distortion coefficients are simultaneously acquired. The unknown parameters in the camera model are solved using these points. On the projection of the laser plane, two intersection lines are formed by the laser plane with the target and the raising block, respectively. The angle between the laser plane and the target is worked out by fitting plane using the two lines. Utilizing this angle, the three coordinates of a point in the laser plane can be represented by two of them. Thus the two coordinates can be directly obtained from the camera model. This method simplifies the calibration procedure of structured-light sensors, and facilitates online use. Experiment studies show that the calibrated sensor possesses good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.