Abstract

AbstractSudden changes caused by nonclimatic factors (inhomogeneities) usually affect instrumental time series of climate variables. To perform robust climate analyses based on observations, a proper identification of such changes is necessary. Here, an approach (named the “GAHMDI” method, after its components and purpose) that is based on a genetic algorithm and hidden Markov models is proposed for detection of inhomogeneities caused by changes in the mean and variance. Simulated series and a case study (winter precipitation from a weather station located in Milan, Italy) are set up to compare GAHMDI with existing methodologies and to highlight its features. For the identification of a single changepoint, GAHMDI performs similarly to other methods (e.g., standard normal homogeneity test). However, for the identification of multiple inhomogeneities and changes in variance, GAHMDI returns better results than three widespread methods by avoiding overdetection. For future applications and research in the homogenization of climate datasets (temperature and precipitation) the use of GAHMDI is encouraged, preferably in combination with another detection procedure (e.g., the method of Caussinus and Mestre) when metadata are not available. Since GAHMDI is developed in the generic context of time series segmentation, it can be applied to series of generic variables—for instance, those related to economics, biology, and informatics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.