Abstract

AbstractIn order to find optimal structures for realistic applications, it is essential to include the real material behavior in the optimization process. For this purpose, this research focuses on thermodynamic topology optimization accounting for plasticity for which a surrogate material model is developed. Characteristically, the stress/strain diagram resulting from physical loading and unloading shows a hysteresis for classical plasticity models. Our material model takes only the physical loading during the optimization process into account. To this end, during a virtual unloading in the optimization process, the dissipation of energy is suppressed which yields the same elasto/plastic deformation state as for physical loading. By using this novel material model, optimized structures can be computed without resourceful classical path‐dependent plasticity computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.