Abstract

Tip clearance leakage flow of the turbine bade is an important factor limiting the augment of the high pressure turbine efficiency, which should be suppressed utilizing certain methods. However, the passive control method with the traditional structure is more and more difficult to satisfy the suppressing ability of the advanced turbine demand. In the present paper, a synergetic suppressing method by combining the approach of blade shape modification and spontaneous injection is adopted, to construct a novel tip structure. The aerodynamic characteristics of the tip leakage flow (TLF) with different blade tip configurations, such as the squealer, squealer-winglet (SW) and squealer-winglet-spontaneous injection holes (SWS) composite configurations, are numerically investigated. The impacts of several key geometric parameters, such as the winglet width and the space ng of spontaneous injection holes, are also discussed. Due to the adjustment of the winglet, the SW tip configuration can get better suppressing effect on TLF than the squealer tip. The SWS synergetic suppression tip decrease the leakage flow rate and the leakage mixing loss on the basis of the SW tip due to the blocking effect of the spontaneous injection flow. The key geometric parameters study shows that the suppressing effect of the TLF can be improved by reasonably increasing the winglet width and reducing the spacing between spontaneous injection holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call