Abstract

Since the ambient temperature and solar irradiance are not constant, and the P-V characteristic curve of a photovoltaic (PV) module is nonlinear, it is hard for a photovoltaic system to operate at the maximum power point (MPP). In fact, using a maximum power point tracking algorithm (MPPT) to reach the MPP is significant when the climatic conditions change during the day. This paper presents a novel approach for grid-connected PV systems based on a Practical Swarm Optimization (PSO) metaheuristic algorithm to ensure the MPPT functionality as well as generating the reference power for the DC-Bus voltage regulation. The proposed method is compared with the conventional MPPT method Perturb and Observe (P&O) under different irradiance variations. The three-phase, two-level voltage source inverter (VSI) is controlled by a finite set model predictive controller (FS-MPC). The simulation results show that the proposed system is more efficient than the conventional method and has good dynamic performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.